Identification of an acetoacetyl coenzyme A synthetase-dependent pathway for utilization of L-(+)-3-hydroxybutyrate in Sinorhizobium meliloti.
نویسندگان
چکیده
D-(-)-3-Hydroxybutyrate (DHB), the immediate depolymerization product of the intracellular carbon store poly-3-hydroxybutyrate (PHB), is oxidized by the enzyme 3-hydroxybutyrate dehydrogenase to acetoacetate (AA) in the PHB degradation pathway. Externally supplied DHB can serve as a sole source of carbon and energy to support the growth of Sinorhizobium meliloti. In contrast, wild-type S. meliloti is not able to utilize the L-(+) isomer of 3-hydroxybutyrate (LHB) as a sole source of carbon and energy. In this study, we show that overexpression of the S. meliloti acsA2 gene, encoding acetoacetyl coenzyme A (acetoacetyl-CoA) synthetase, confers LHB utilization ability, and this is accompanied by novel LHB-CoA synthetase activity. Kinetics studies with the purified AcsA2 protein confirmed its ability to utilize both AA and LHB as substrates and showed that the affinity of the enzyme for LHB was clearly lower than that for AA. These results thus provide direct evidence for the LHB-CoA synthetase activity of the AcsA2 protein and demonstrate that the LHB utilization pathway in S. meliloti is AcsA2 dependent.
منابع مشابه
Requirement for the enzymes acetoacetyl coenzyme A synthetase and poly-3-hydroxybutyrate (PHB) synthase for growth of Sinorhizobium meliloti on PHB cycle intermediates.
We have identified two Sinorhizobium meliloti chromosomal loci affecting the poly-3-hydroxybutyrate degradation pathway. One locus was identified as the gene acsA, encoding acetoacetyl coenzyme A (acetoacetyl-CoA) synthetase. Analysis of the acsA nucleotide sequence revealed that this gene encodes a putative protein with a molecular weight of 72,000 that shows similarity to acetyl-CoA synthetas...
متن کاملCatabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus.
Acetone degradation by cell suspensions of Desulfococcus biacutus was CO2 dependent, indicating initiation by a carboxylation reaction, while degradation of 3-hydroxybutyrate was not CO2 dependent. Growth on 3-hydroxybutyrate resulted in acetate accumulation in the medium at a ratio of 1 mol of acetate per mol of substrate degraded. In acetone-grown cultures no coenzyme A (CoA) transferase or C...
متن کاملPoly-3-hydroxybutyrate degradation in Rhizobium (Sinorhizobium) meliloti: isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase.
We have cloned and sequenced the 3-hydroxybutyrate dehydrogenase-encoding gene (bdhA) from Rhizobium (Sinorhizobium) meliloti. The gene has an open reading frame of 777 bp that encodes a polypeptide of 258 amino acid residues (molecular weight 27,177, pI 6.07). The R. meliloti Bdh protein exhibits features common to members of the short-chain alcohol dehydrogenase superfamily. bdhA is the first...
متن کاملUnprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway.
Acetoacetyl-CoA is the precursor of 3-hydroxy-3-methylglutaryl (HMG)-CoA in the mevalonate pathway, which is essential for terpenoid backbone biosynthesis. Acetoacetyl-CoA is also the precursor of poly-beta-hydroxybutyrate, a polymer belonging to the polyester class produced by microorganisms. The de novo synthesis of acetoacetyl-CoA is usually catalyzed by acetoacetyl-CoA thiolase via a thioes...
متن کاملAcetoacetate and brain lipogenesis: developmental pattern of acetoacetyl-coenzyme A synthetase in the soluble fraction of rat brain.
The existence of acetoacetyl-CoA synthetase in rat brain cytosol is reported. The coupling of this enzyme with cytosolic acetoacetyl-CoA thiolase can provide acetyl-CoA for lipogenesis and cholesterol synthesis without the need for mitochondrial participation. This new route for acetoacetate utilization may be important in developing brain.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 6 شماره
صفحات -
تاریخ انتشار 2002